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Abstract

The question whether Kuhn’s theory of scientific revolutions could be applied to mathematics arose many interesting problems. The aim of this paper is to discuss, whether there are different kinds of scientific revolutions, and if yes, so how many. The basic idea of the paper is to discriminate between the formal and the social aspects of the development of science and to compare them. The paper has four parts.

In the first introductory part we discuss some of the questions, which arose during the debate of the historians of mathematics. In the second part, we introduce the concept of the epistemic framework of a theory. We suggest to discriminate three parts of this framework, from which the one called formal frame will be of considerable importance for our approach, as its development is conservative and gradual.

In the third part of the paper we define the concept of epistemic rupture as a discontinuity in the formal frame. The conservative and gradual nature of the changes of the formal frame open the possibility to compare different epistemic ruptures. We try to show, that there are three different kinds of epistemic ruptures, which we call idealisation, re-presentation, objectivisation and re-formulation. 

In the last part of the paper we derive from the classification of the epistemic ruptures a classification of scientific revolutions. As only the first three kinds of ruptures are revolutionary, (the re-formulations are rather cumulative), we obtain three kinds of scientific revolutions: idealisation, re-presentation, and objectivisation. We discuss the relation of our classification of scientific revolutions to the views of Kuhn, Lakatos, Crowe, and Dauben.

1. Kuhn’s concept of scientific revolution in light of the                         history of mathematics

During the discussion of the question whether Kuhn’s theory of scientific revolutions could be applied to mathematics it turned out, that there are at least two different ways in which the concept of scientific revolution could be defined. One definition was proposed by Michael Crowe, the other by Joseph Dauben. These two concepts of scientific revolution differ in the degree of the overthrowing of the old paradigm, as well as in the degree of the incommensurability of the new and the old one. The examples, on which these differences were illustrated, were the Copernican and Einsteinean revolutions, which are Kuhn’s original examples. So the discussions in the field of the history of mathematics opened a fundamental question, namely the problem to discriminate the different kinds of scientific revolutions and to give possibly a complete classification of them.

We believe, that this classification of scientific revolutions is important for Kuhn’s theory itself. From the very beginning Kuhn was criticised that his concept of paradigm is vague and that he used it in 22 different ways. Kuhn himself accepted this criticism and replaced the concept of paradigm by the concept of disciplinary matrix. We think, that this replacement does not solve the problem. It just replaces a vague and unarticulated concept by an equally vague, only better articulated one. Thus the 22 uses are still there, only now we know, that they belong to different aspects of the disciplinary matrix. The idea, that there may be different kinds of scientific revolutions offers another solution to the problem of the vagueness of the concept of paradigm. We believe, that the vagueness of this concept is the consequence of the fact, that Kuhn included into the concept of scientific revolution different processes. Thus we think, that by the discrimination of the concept of scientific revolution into different kinds we automatically obtain a decomposition of the concept of paradigm, and this will resolve the criticised vagueness of the Kuhn’s original concept. Thus Kuhn’s original concept is vague for the simple reason, that it is a superposition of several different concepts. We believe, that it is possible to discriminate at least three different kinds of scientific revolution, which we call idealisation, re-presentation and objectivisation. To these kinds of revolutions there correspond three different kinds of paradigms. In this way the Kuhn’s 22 different uses of this concept will be divided into three groups of approximately seven for each kind. Seven is still a bit too much, but it is more plausible to believe that a concept might have seven aspects than 22. Thus we consider our classification a contribution to the development of Kuhn’s theory.

Our classification of scientific revolutions may help to find better understanding of different discussions in the philosophy or history of science and mathematics, as was the Kuhn-Lakatos discussion or the Crowe-Dauben debate. In many of these discussions misunderstandings arise from the fact that the participants base their views on the analysis of changes of different kinds. (Kuhn and Crowe analyse idealisations, Dauben re-presentations and Lakatos objectivisations). Nevertheless as the concept of scientific revolution is not differentiated, they all formulate the results of their analysis in general terms. Thus they ascribe to views valid for one particular kind of revolution universal validity. So it is not surprising, than many misunderstandings arise. The discussion on incommensurability is a typical discussion of this kind. The thesis of the incommensurability of the old and the new paradigm is totally valid in the case of idealisations, partially valid for re-presentations and not valid for objectivisations. Thus if Kuhn based his views upon the analysis of idealisations and Lakatos on objectivisations, it is clear that they disagreed. If we clearly discriminate from the very beginning the three kinds of scientific revolutions, it is possible to ask for which of them are the views of Kuhn, Lakatos, Crowe or Dauben adequate, and where they distort the facts.

1.1 Are there one, two, or three kinds of scientific revolutions ?

The question whether Kuhn’s theory of scientific revolutions could be applied to mathematics gave rise to a vivid discussion. From the very beginning two opposite positions, those of Michael Crowe and of Joseph Dauben were clearly presented. While Michael Crowe claimed, that „Revolutions never occur in mathematics“ (Crowe 1975), Joseph Dauben argued that „revolutions can and do occur in the  history of mathematics, and the Greeks’ discovery of incommensurable magnitudes and Georg Cantor’s creation of transfinite set theory are especially appropriate examples of such revolutionary transformations“ (Dauben 1984). In the introduction to a recent collection of papers Revolutions in Mathematics, the editor Donald Gillies explains this opposition, as a result of different concepts of  revolution, employed by Crowe and Dauben. While Crowe proposes as a necessary condition for a revolution „that some previously existing entity (be it king, constitution, or  theory) must be overthrown and irrevocably discarded“, for Dauben it is sufficient that this entity „is relegated to a significantly lesser position“.

According to Gillies both of these two concepts of revolutions are justified, because they describe really existing differences. „This suggests that we may distinguish two types of revolution. In the first type, which could be called Russian, the strong Crowe condition is satisfied, and some  previously existing entity is overthrown and irrevocably discarded. In the second type, which could be called Franco-British, the previously existing entity persists, but experiences a considerable loss of importance.  ... It is at once clear that the Copernican and the chemical revolution were Russian revolutions, while the Einsteinian revolution was Franco-British. After the triumph of  Newton, Aristotelian mechanics was indeed irrevocably discarded. It was no longer taught to budding scientists, and appeared in the university curriculum, if at all, only in history of science courses. The situation is quite  different for Newtonian mechanics, for, after the triumph of  Einstein, Newtonian mechanics is still being taught, and  is still applied in a wide class of cases.“ (Gillies 1992, p. 5)

It is important to notice, that the different nature of the Copernican and Einsteinian revolutions was shown by the behaviour of the scientific community. As all these illustrations are Kuhn’s original examples of the concept of scientific revolution, the Crowe-Dauben debate rises the first set problems as for example: Are these different kinds of revolutions based on different kinds of paradigms? Can we speak also of different kinds of incommensurability? Are there different kinds of anomalies and different types of crisis? 

In his paper The Fregean revolution in Logic (Gillies 1992b) Donald Gillies tries to apply his distinction of the two types of revolution in the analysis of Frege’s contribution to logic. As it turned out, Fregean revolution is neither a Russian nor  is it a Franco-British one. It cannot be Russian, because in a Russian revolution the theory is overthrown and irrevocably discarded while the Aristotelian logic „still, with some additional restrictions - like Newtonian mechanics - continues to be regarded as valid.“ On the other hand it is not a  Franco-British because in a Franco-British revolution the  theory only loses its former importance, while the  „Aristotelian logic has been discarded to a much greater  extent than has Newtonian mechanics“. (Gillies 1992b, p. 269)

A possible way out would be to introduce a third type of revolution, which could be called an American revolution. It is  a revolution in which a former colony declares its independence from the mother country. During the colonial era, the economic, social, cultural, monetary, metric, etc. structures were imported from the old continent. After some time living under this imported system, the people in the colony realised, that the imported structure is not optimal for  their purposes, and declared independence. The old regime  is overthrown and irrevocably discarded, but not totally, because in the mother country it survives.

We think, that this was exactly what happened with Aristotelian logic in the 19th century. Boole discovered a new field for mathematical investigation, applying algebraic symbolism to Aristotelian syllogistic logic. We could say, he colonised classical logic, which was formerly a part of philosophy, by algebra. As this new mathematical colony flourished, it turned out, that the Aristotelian frame as well as the algebraic methods were not sufficient to solve the deeper questions which were encountered in the foundations of arithmetic. So Frege overthrew the Aristotelian syllogisms as the basis for logic and developed the predicate calculus. That is why the Fregean revolution resembles the Russian type - in the field of  the mathematical logic (the new continent) the syllogistic logic is overthrown and irrevocably discarded. But on the other hand in philosophy (the mother country) the Aristotelian logic is still taught and is regarded to be an integral part of the tradition. It only lost part of its importance. That is why Fregean revolution resembles the Franco-British type. So Fregean revolution can be seen as the establishment of formal logic as a mathematical discipline independent from the philosophical tradition. Formal logic is independent from philosophy in the choice of questions and problems which it formulates as well as of methods and means which it uses in the course of their solution.

Another example of an American revolution was the invention of the calculus by Newton and Leibniz. After the colonisation of the new continent of analytic curves with algebraic methods by Descartes, it turned out, that many important curves are not polynomial. The algebraic methods were not suitable for dealing with such curves as ln(x) or cos(x) and so Newton and Leibniz declared independence from algebra and developed new methods, based on infinitesimals or  fluxions. But the methods of Descartes survived in algebraic geometry which is still an important branch of mathematics.

In this way the second set of problems arises. Can we classify the different kinds of scientific revolutions? How many different kinds of revolutions are there? How can we find them? Can we be sure, that we have not forgotten some? On what basis should we build our classification - on sociological, historical, logical, epistemological?

The aim of this paper is to offer an approach to these two sets of problems. The approach we have in mind is based on Piaget’s concept of the epistemic framework (Piaget and Garcia 1983) but it employs in a large extent also formal mathematical methods of analysis. Its basic idea is to discriminate between scientific revolutions and epistemic ruptures. An epistemic rupture is a discontinuity in the formal structure of a scientific theory, which accompany a scientific revolution. The main reason for this discrimination is the fact, that the epistemic ruptures can be studied by formal (mathematical) means, what makes possible their classification. The classification of the scientific revolutions can be then obtained from the analysis of the epistemic ruptures, which accompany the particular revolution.

1.2 The need of a formal approach in philosophy of science

In the previous paragraph we discussed the possibility to introduce three kinds of scientific revolutions. Nevertheless it is possible that there could be found further examples of revolutions which will not fit even into the three type model (using besides the Russian and Franco-British revolutions, defined by Gillies also the American type), and we will be forced to introduce a further type. We do not intend to follow this course. We think, that the basic weakness of this approach lies in the use of political metaphors. In the case of Gillies the political vocabulary was adequate. It only had to focus our  attention to the fact, that Crowe and Dauben do not contradict each other, but they rather speak of different things. Now, when we have introduced a third type of revolution, the metaphorical language becomes an obstacle. There is no reason, why to every kind of revolution in science there should be an analogous political revolution. Perhaps scientific revolutions are of 18 basic types, while of political revolutions there is only 14 types. In order to be able to give answers to our two sets questions, (a more detailed characterisation of the different kinds of scientific revolutions and a classification of scientific revolutions) we need a more precise language than political metaphors. The only possibility is to turn to science itself and use its own formal language in a technical way. 

But for this it is necessary to contest Kuhn’s theory in one basic point, namely in its refusal of the  use of formal reconstructions in the philosophy of science. Our basic strategy for the classification of scientific revolutions is based on the formal reconstruction of the epistemic ruptures, which accompany each revolution. This method may arise opposition from the defenders of the incommensurability thesis, because we will use formal tools such as group theory or differential equations (which belong to the paradigm of contemporary science) in interpreting of scientific theories stemming from different eras. So first of all it is necessary to legitimate our method.

Kuhn writes: „Can Newtonian dynamics really be derived from relativistic dynamics? What would such a derivation look like? Imagine a set of statements, E1, E2, ..., En, which together embody the laws of relativity theory. ...To prove the adequacy of Newtonian dynamics as a special case, we must add to the Ei’s additional statements like (v/c)2 « 1, restricting the range of the parameters and variables. This enlarged set of statements is then manipulated to yield a new set, N1, N2, ..., Nm, which is identical in form with Newton’s  laws of motion, the law of gravity, and so on. Apparently  Newtonian dynamics has been derived from Einsteinian, subject to a few limiting conditions.

Yet the derivation is spurious, at least to this point. Though the Ni’s are a special case of the laws of relativistic mechanics, they are not Newton’s Laws. Or at least they are not unless those laws are reinterpreted in a way that would have been impossible until after Einstein’s work. The variables and parameters that in Einsteinian Ei’s represented spatial position, time, mass, etc., still occur in the Ni’s; and they there still represent Einsteinian space, time, and mass. But the physical referents of these Einsteinian concepts are by no means identical with those of the Newtonian concepts that bear the same name. ...Unless we change the definitions of the variables of the Ni’s, the statements we have derived are not Newtonian. If we do change them, we cannot properly be said to  have derived Newton’s Laws, at least not in any sense of „derive“ now generally recognised.“ (Kuhn 1962, p. 100)

It seems, that in this point we must agree with Kuhn. In the limit (v/c)2 

0 we really obtain not Newtonian mechanics, but only a fragment of relativistic mechanics, which from the formal point of view resembles Newtonian mechanics, but on the conceptual level differs from it. Einstein defines his basic concepts in a different way. For instance the length of a moving body he defines using a system of synchronised watches. Newton would never have come to the idea of defining separately the length of a moving body. In his conceptual system the length of a body is independent of its motion. That is a principle which he regards as evident. Thus even if we obtain in the limit (v/c)2 

0 that there is no contraction of length, and so we have seemingly justified Newton’s theory, we have proven this using Einsteinian concept of length. For the Newtonian concept there is nothing to prove. Length is constant a priori, the whole Newtonian mechanics is built on the supposition of its  constantness. So Kuhn is absolutely right that such formal  reconstructions contribute nothing to the understanding of Newtonian physics. That Einsteinean length depends on the speed of light, and that in the case of infinite lightspeed it becomes constant, what has this to do with Newton?  In his mechanics he never mentioned something like the speed of light.

This apparent agreement with Kuhn’s rejection of formal reconstructions of scientific revolutions has one condition. Kuhn is right, as long as he speaks about a single isolated scientific revolution. To understand more deeply the Einsteinian revolution formal reconstructions are really of minimal help. On the other hand formal reconstructions can help us very much if we wish to compare different revolutions. Our aim is to take not one or two revolutions, as Kuhn did, but to take  20 or 30 revolutions discussed in the literature, and try to compare them. In such comparisons the formal reconstruction of the transition from one theory to the other during the revolution can serve as an indicator of the magnitude of the revolution.

Of course, each revolution consists first of all in the rebuilding of the conceptual frame of the theory, which cannot be reduced to purely formal changes. But with each such rebuilding of the conceptual frame there is internally related a parallel formal change. So we can compare the different conceptual shifts using the related formal changes, and with the help of measuring the magnitude of these formal ruptures we can measure the magnitude of the related conceptual shifts and so get a tool for the classification of the scientific revolutions.

It is a surprising and nontrivial fact, that between projective and Euclidean geometry there is a limit transition analogous, to the transition between Einsteinian and Newtonian mechanics. In both cases the transition consists in the growth of some quantity to infinity. The only difference is that  instead of the speed of light it is the distance from the centre of projection. The formal similarity of these two revolutions naturally rises the question of finding further revolutions, which are based on the same limit transitions and by their comparison trying to understand their deeper conceptual similarity, an indicator of which is this formal  analogy. The next step is to find such formal indications for other known revolutions. 

2. The concept of epistemic rupture of a scientific theory

In the previous chapter we declared, that we intend to study in a systematic manner the formal analogies which exist among different stages of the development of scientific theories. For this reason we will use the concept of epistemic framework introduced by Jean Piaget and Rolando Garcia in 1983. We will define the formal frame as a part of the general concept of the epistemic framework. This enables us to define the concept of epistemic rupture as a discontinuity in the formal frame. In this way we obtain a technical tool for the study of the various kinds of formal transitions among different theories. 

2.1 The concept of the epistemic framework of a scientific theory.

Piaget and Garcia proposed as a complement to Kuhn’s “external” epistemology based on the concept of paradigm an “internal” account of the development of science as a sequence of changes of the epistemic framework. The notion of epistemic framework is characterised through parameters as  (Piaget and Garcia, 1983 p. 57):

“a - the type of question a given theory attempts to find the answer to

b - the type of nondemonstrated premise, explicitly or implicitly accepted

c - the kind of relationship between experience (experimentation) and the theory

d - the role of mathematics in the formulation of a physical theory”
History of science is usually presented as history of its concepts, ideas and theories, i.e. as the development of its foreground, or as the history of its social, cultural or technological background. Piaget’s concern is to reconstruct the internal, cognitive background of knowledge. His point is, that utterances are possible only on the background of the suppressed, the apparent only on the background of hidden, the explicit on the background of the implicit, the named on the background of the unnamed, the declared on the background of the undeclared, the uncovered only on the background of the covered, the similar only on the background of the different. The epistemic background is precisely the background, formed by the suppressed, hidden, implicit, unnamed, undeclared, covered, different, which makes it possible to form a question (a), an argument (b), a fact (c), or a mathematical formula (d).

We would like to present a more subtle differentiation of the concept of the epistemic framework of a scientific theory and in this way to create a tool for a more precise analysis of the evolution of science. Our aim is to discriminate how we formally describe the world, from how we conceptually explain it and from how we intuitively perceive it. That means that we would like to divide Piaget’s concept of epistemic framework into its three parts, namely the formal, the conceptual and the evidential. In order to prevent confusions, we suggest to retain the name framework for the whole e Piaget’s epistemic framework, and when speaking about its parts to call them frames. 

First we introduce some illustrations of what we would like to subsume under the concept of the formal frame. Then the concepts of the formal, conceptual and evidential frames are introduced, together with their illustration by the example of Newtonian mechanics. In the third part we try to argue, that in contrast to the conceptual frame of a theory, its formal frame develops conservatively and gradually. If this is the case, then the changes of the formal frame of a theory during a scientific revolution would not be irregular and unpredictable jumps which are beyond the possibility of rational reconstruction but would rather follow certain patterns.

2.2 Preliminary indication of the concept of formal frame of a scientific theory

To avoid some misunderstandings in connection with the term formal, before its definition we would like to introduce this notion by two historical examples.

2.2.1 The symmetries of the theory

Let us first consider the Ptolemaic system in its more or less complicated version (see for instance Crowe 1990, p.50). What we see is the motionless Earth surrounded by a complex system of circles which determine the motion of planets. It is not difficult to see that this system is invariant in respect to rotations around the centre of the Earth. All the predictions of the system rotated in space are the same as of the original one. On the other hand, the Ptolemaic system is not invariant to translations in space. To understand why it is so, it is necessary to consider the concept of gravity. For the ancient Greeks things move downwards not because the Earth would attract them but because their natural position is down (that means near the centre of the universe - which coincides with the centre of the Earth). Thus gravitation was not considered as the property of matter but as a property of space itself. Gravitation is a movement to a definite point in space. Space then is nonhomogenous: it has a centre. In mathematics this kind of space is called linear space. The space of the Ptolemaic theory is linear space. It is invariant only to rotations, but not to translations.

Let us now take the Copernican theory. In this theory the Earth is placed not in the centre of the universe. Gravity then is no longer the property of space, but the property of matter. Things move down because the Earth attracts them, i.e., the space has lost its centre, it has become homogeneous, which means that it is invariant also to translations. In mathematics space of this kind is called affine space. The space of the Copernican theory is an affine space. It is invariant to rotations and also to translations.

Now a footnote in Arnold’s book Mathematical methods of classical mechanics becomes more comprehensible. Arnold describes the Copernican revolution as a transition from linear to affine space: “Formerly, the universe was provided not with an affine, but with a linear structure (the geocentric system of the universe” (Arnold 1974, p. 5)

The transformations of space, under which a theory is invariant, form a group of transformations. This group is a part of the formal frame of the theory. In the case of the Ptolemaic system it is the group of rotations, in the Copernican system there are rotations and translations. These groups of symmetries played a crucial role in the development of physics. Galilei found a much broader system of transformations, under which a physical theory has to be invariant. During the Einsteinian revolution the Galilean transformations were replaced by  the Lorentz group. We see, that the basic changes in the development of science are related to changes of the group of symmetries of the theory.

2.2.2 The differential equations governing motion

Referring to differential equations in connection with Aristotelian physics may raise some doubts in the reader. It is obvious that Aristotle did not use the concept of the differential equation in his considerations. However, if we take a differential equation not as a concept (that is a means of explanation) but as a tool of formal description of motion, we can try to find the differential equations implicitly contained in his explanations. Ptolemy also did not know anything about the concept of group but hardly anybody could deny that his system is formally invariant under the group of rotations. The same applies to Aristotle. Although he did not use the concept of differential equation, the way in which he spoke about motion is formally very close to first order dynamics.

Aristotle considered motion as something in want of explanation, the fact that something is moving called for a cause. That means that if there is no cause acting, the motion will stop. If there is a cause acting, it gives rise to motion, the velocity v of which shall be proportional to the magnitude of the of the cause F. We have

F ~ v

and as the velocity v is the first derivative of position, we can say, that from the formal point of view Aristotle describes the motion as a first order dynamics.

In the Newtonian theory motion is considered as something natural, which needs no explanation. Not motion itself but only changes of motion are to be explained. That means that if there is no force acting, bodies will not stop but will continue their uniform motion in a straight line. If a force is acting, it leads to acceleration a which shall be proportional to the magnitude F of the force. This is the well-known Newton’s law. We have

 F ~ a

and as the acceleration is the second derivative of position, we can say that Newton describes motion as a second order dynamics.

The formal, „syntactical“ structure of motion, implicitly embodied in a theory can be in a most natural way described in terms of differential equations. These equations are another part of the formal frame of a theory. In the case of the Aristotelian theory of motion it was a first order differential equation, in the case of Newtonian theory it was a second order differential equation.

2.2.3 The fundamental constants of the theory

One of the characteristic features of relativistic mechanics is that the constant c, representing the speed of light, occurs in its formulas  We do not meet the speed of light in Newtonian mechanics. For Newton light is studied in optics. Mechanics is independent from the optical phenomena, and so there is no reason for introducing the speed of light into the formulas of mechanics. On the other hand, the gravitational constant G does appear in Newtonian mechanics. So for Newton the gravitational constant enters into the formal frame of mechanics, while the speed of light does not.

If we look from the point of view of the universal constants at Aristotelian physics, we see, that we cannot find there either of these constants, neither the speed of light, nor the gravitational constant. But in contrast to Newtonian mechanics, Aristotelian physics has a constant point in space - the centre of the universe, and accompanying it the invariant direction downwards.

Thus we see, that the language of the theory is not something homogenous. It includes some specific constants (as c or G) and some specific points or directions (as the centre of the universe and the direction downwards). These specific expressions of the language constitute another part of the formal frame of the theory. Such considerations about the fundamental constants have played an important role in the development of quantum mechanics.

2.3 Decomposition of the epistemic framework into three components

After these prefatory examples we would like to introduce a distinction concerning the structure of the epistemic framework of a scientific theory. We propose to distinguish three basic structures - the formal frame, the conceptual frame, and the evidential frame of a theory.

2.3.1 The formal frame of a theory

The formal frame of a theory embodies its formal structure, that means the structure of the symbolic language of the theory (which variables and constants the theory uses, how they are related), the structure of the (maybe implicit) form of descriptions (such as the description of motion by first or second order differential equations), and the structure of the symmetries of the theory (the group of transformations leaving the theory invariant).

These three components of the formal frame of the theory are closely connected. The constants of the theory are tied together with its symmetries. If we want include the speed of light among the fundamental constants of mechanics, it is necessary to replace the Galilean group by the Lorentz’s one. On the other hand, if we replace the group of rotations by the affine group, the universe loses its constant centre. There is also a similarly close connection between the form of description and the symmetries of the theory. If we replace Aristotelian first order dynamics by second order Newtonian, we have to change also the group of symmetries to the Galilean group.

2.3.2 The conceptual frame of the theory

 The conceptual frame of a theory embodies its semantic structure, that means the structure of categorisation (Which basic categories are used by the formulation of the theory and how they are related to each other.), explanation (Which phenomena are considered as calling for an explanation, what are the explanatory principles.), and interpretation (To which other theories has the considered theory relations, what these relations look like. For instance we can have a reduction of one theory to another, which is considered to be more fundamental, as it is in the case of reduction of the optical phenomena to electrodynamics. Another possibility is an isomorphism of theories, where neither of the theories is more fundamental than the other, as it is in the case of the analogy between the theory of the ideal pendulum and the theory of electrical circuits. Here the resistance is isomorphic to friction, capacity to the gravitational potential and induction to the mass, but we cannot say, that any of these three concepts can be reduced or explained with the other three.).

2.3.3 The evidential frame of the theory

The evidential frame of a theory embodies its perceptive structure, that means the structure of disclosedness (which phenomena does the theory “see” and to which it is “blind”), the structure of differentiation (which differences is the theory sensitive to, and which differences does it ignore), and the structure of metaphoricity (on which metaphors and analogies is the theory based, which analogies it uses and which it suppresses).

2.4 Illustration of the decomposition in the case of Newtonian mechanics

A detailed reconstruction of the formal, conceptual and evidential frames of the Newtonian mechanics is beyond the scope of this paper. We would like to present only a general outline, which, we hope will nevertheless be sufficient to indicate the basic differences among these three frames. For this reason it will be sufficient to analyse the Newtonian mechanics in its standard textbook formulation, and it is not necessary to enter the rather delicate question of Newton’s own view.

2.4.1 The formal frame of Newtonian mechanics

The symbolism of the Newtonian mechanics includes among others m for mass, V for volume, F for force, a for acceleration, G for the gravitational constant, 

 for the density. Among these symbols there are many relations, for instance, the density, mass and volume are related as 

 = m/V, or the force, mass and acceleration as F = ma. A slightly different symbolism would be used, if we wanted to formulate Newtonian mechanics with the help of the differential and integral calculus as for instance Euler did, or in the original Newton’s form.

For the form of description of Newtonian mechanics, it is characteristic that it describes motion as a second order dynamics. In this respect it differs from Aristotelian “dynamics” in which motion was understood as basically first order affair. So what on the level of symbolism was reflected in the fact, that beside the velocity v it included also the acceleration a, becomes here a much richer content. For instance the fact that the dynamics is of second order means also, that in a homogenous gravitational field the trajectories have the form of parabolas - i.e. curves of second order. This fact, as well as many others, follows directly from the assumption, that the dynamics is of second order.

The symmetries of the Newtonian mechanics form the Galilean group, in contrast to the affine group of the Copernican system or the Lorentz group of the special theory of relativity.

2.4.2 The conceptual frame of the Newtonian mechanics

For the categorisation of the Newtonian mechanics it is characteristic that mass and volume are regarded as fundamental quantities, while density is a derived quantity. It is worth mentioning, that Newton himself defined the mass (or the quantity of matter - as he called it) as the product of volume and density, what means that he considered density fundamental and mass as derived. The reason for this could be, that density is the property of matter included among its primary qualities. All pieces of the same matter have the same density. On the other hand mass is a less fundamental property. It depends not only from the matter itself, but also from how big piece of it we take. So we can say that Newton’s categorisation followed the principle of dependence. The category that is less dependent, plays a more fundamental role. On the other hand our categorisation is operationalist. Which category is more fundamental depends on the way of its measurement. As to measure mass it is easier than to measure density, we define the density with the help of the mass, and therefore consider the concept of mass to be more fundamental one than the concept of density.

For the explanatory structure of Newtonian mechanics it is characteristic, that free fall, as it is an accelerated motion, requires an explanation. In this respect it differs from Aristotelian mechanics, which considered free fall to be a natural motion, and therefore not requiring special explanation. In Newtonian mechanics the explanation of free fall is the gravitational force. But this gravitational force itself is considered to be an explanatory principle, and as such it needs no further explanation. So the question, why are falling bodies accelerated is a legitimate question of the Newtonian mechanics and the answer is: because the Earth attracts them. On the other hand the question, why does the Earth attract the falling bodies is, an „illegitimate question“. Newtonian mechanics gives no answer to it.

The structure of interpretations of Newtonian mechanics can be illustrated in the case of thermal phenomena, if we interpret heat as the kinetic energy of the small parts of matter. This mechanical interpretation of heat, that is the explanation of thermal phenomena using mechanical concepts disclosed an important contradiction between the reversible character of time in mechanics and the irreversible time of thermodynamics. As long as the thermodynamics was considered to be the theory of caloric, it was possible to regard the irreversibility of thermal phenomena as a characteristic property of this particular substance, in which it differs from the ordinary matter. As soon as we interpret thermal phenomena in a mechanical way, the concepts of reversible and irreversible time become parts of the same conceptual frame, and their contradiction becomes obvious. This example shows, that the question which interpretations are connected with the particular theory is not an external question, but on the contrary, it affects the core of the conceptual frame.

2.4.3 The evidential frame of Newtonian mechanics

For the structure of disclosedness of Newtonian mechanics it is characteristic that it depicts the universe as a system of bodies placed in the infinite empty space, moving forever under the effect of attractive forces acting at a distance. This placing of the universe into an infinite empty space, the eternal nature of motion as well as action at a distance, which are the basic principles of how the Newtonian mechanics discloses the world, are absurd and inconceivable from the point of view of Aristotelian physics. On the contrary, phenomena such as life, growth, and purpose, which Aristotle sees in nature and explains in his physics, the Newtonian physics does not consider.

According to the structure of differentiation, a discrimination between the average and instant speed is characteristic for Newtonian mechanics, which for Aristotle and the whole of Antiquity blended. On the other hand to the Aristotelian distinction between natural and unnatural motions Newton is absolutely “insensitive”.

The structure of metaphoricity of Newtonian mechanics includes the famous analogy between the Moon and an apple. According to Newton, the Moon resembles a large stone, a metaphor which is quite absurd for Aristotle. If the Moon were a stone, its natural place would be down and not on the sky. This metaphor opened up the possibility of unifying the sublunar and the translunar physics into a single theory, and so is fundamental for the whole of Newtonian mechanics.

2.5 Connections among different parts of the epistemic framework

In the preceding sections we tried to illustrate the concepts of the formal, conceptual and evidential frame. In each of them there are basically three layers (e.g. in the formal frame there is the symbolism, form of description and symmetries). In the case of the formal frame we have already emphasised the close connections among these three layers. Actually, it is impossible to make a substantial change in one of them, without influencing the other two as well. 

disclosedness
categorisation
symbolism

differentiation
explanation
form of description

metaphors
interpretations
symmetries

We would like to draw attention to some further relations. First of all, it is clear that an analogous close connection also exists between the three layers of the conceptual frame (i.e. the layers of categorisation, explanation and interpretation - for instance a shift in the categorical system may require to adopt or change some explanations, and it can affect also the interpretations) as well as in the evidential frame (i.e. the layers of disclosedness, differentiation and metaphoricity). But besides these “vertical” relations between different layers of the same frame, there is also a “horizontal” relation between the appropriate layers of different frames. We have in mind the relation between the symbolism, categorisation and disclosedness. It can be said that symbolism reproduces in a formal way the structure of categorisation - the fundamental constants and the basic symbols are closely connected to the basic categories. In a similar way the categorisation can be seen as a conceptual reproduction or grasping of the main features of the disclosedness. That means, that the symbolism, categorisation and disclosedness of a particular theory are in a certain coherence. There is a similar coherence also between the form of description, the structures of explanations and the differentiation. First we need some sensitivity for the differences, in order to try to explain them, and only a coherent body of explanations can show a form of description. And last but not least, there is also a similar coherence between the symmetries, interpretations and metaphors. Every interpretation is based on some similarity, which is originally only a metaphor. Only after conceptualisation does this metaphor become a form of interpretation. And of course, what makes the interpretation possible is an isomorphism (or at least homomorphism) between the structures of symmetry of the two theories.

3. Epistemic ruptures and their classification

In the previous sections we introduced the concept of the formal frame of a scientific theory. Now we would like to analyse the character of the changes of the formal frame during the evolution of a scientific theory. We will show that these changes are conservative and gradual. Conservativeness means that the new formal frame is an extension of the previous one so that the old frame can be reconstructed in terms of the new one. Gradualness means that between the new and the old formal frames there is no gap, and that the new frame is the most natural generalisation of the old one. This makes it possible to use the analysis of the changes of the formal frame, which we will call epistemic ruptures, in the study of the development of scientific theories.

3.1. The conservative character of the formal frame changes

 If we compare the groups of transformations of the Ptolemaic and Copernican systems, it is readily seen that the „Ptolemaic“ group (group of rotations) is a part of the „Copernican“ group. Indeed, the Copernican system is invariant to all rotations, furthermore, it is invariant also to some other transformations (namely translations). So we can say, that the symmetries of the Copernican system are an extension of the symmetries of the Ptolemaic system. So even if on the conceptual level the geocentric and the heliocentric systems contradict each other (and on the evidential level the conflict is even worse) between their symmetry groups there is a nice harmony. One is embedded into the other.

 Let us now consider the Aristotelian and Newtonian theories of motion. It is beyond any doubt that on the conceptual level there exists a fundamental difference between these two theories. They describe motion differently use different schemata of explanation and the Newtonian theory was developed in opposition to the Aristotelian one. Nevertheless, if we examine the formal frames of these two theories, the differences will be not so radical. As we shall see, the formal frame of the Aristotelian theory of motion can be reconstructed in terms of the Newtonian frame. This reconstruction is a bit technical. To make it more comprehensible, I suggest we should examine a model situation, which was designed for this purpose. (Simonyi, 1978, p. 71-76)

 Imagine a big container (a whole room) filled with honey, and let us drop two stones into it, a big and a small one. What we shall see is exactly what Aristotle said about free fall, namely that the heavy stone falls with a higher speed than the light one. To understand why this is so, let us take Newton’s second law

 FG = ma + kv

where FG is the gravitational force, m is the mass, a is the acceleration, k is the coefficient of friction and v is the velocity. As in honey the friction is great, the term ma can be neglected in comparison with the term kv. Thus instead of a second order equation we obtain a first order one, the solution of which is v = FG /k. This means that the velocity is proportional to the weight of the falling body. Hence from the Newtonian law we got exactly what Aristotle said about motion, even though the conceptual backgrounds of this statement in Aristotle and in Newton are quite different. Aristotle thought of it as a universal principle, whereas for Newton it is only the result of friction.

 Let us consider another situation - imagine that somebody has shot a projectile into our container. What happen? Since the projectile is a light body, while it moves with a high speed, the friction kv and inertia ma are much greater than the force of gravity FG. In equation (1) we can thus neglect the term FG, and we get 0 = ma + kv, from where we get for the deceleration a = -kv/m. This means, that the projectile move in a straight line in the direction of its original velocity v. After this quick motion is slowed down by the friction, the terms ma and kv become small, (of the order of the force FG). The force FG can no longer be neglected. But on the other hand, as the motion is now slowed down we obtain the situation from the previous example. The term ma can be neglected, and the projectile starts to fall very slowly downwards with the velocity FG /k. Again we obtained something very similar to the Aristotelian description of the motion of a projectile, namely that its motion consists of two separate parts. The first part of the motion is propelled by the original agent and only after it is exhausted, a natural motion in the direction downwards starts. Both of these motions are motions in a straight line and so the whole motion of the projectile has the form of a broken line. So again we got from the Newtonian law the Aristotelian description (of course with all the limitations concerning the conceptual background of this formal result).

 From our examples we can infer, that the formal frame of the Aristotelian mechanics can be reconstructed as Newtonian motion in a medium with a high viscosity. The viscosity is responsible for the reduction of Newtonian second order dynamics to Aristotelian first order one. So we can say that the formal frame of Newtonian mechanics is a conservative extension of the Aristotelian frame.

3.2 The gradual character of the formal frame’s changes

 Let us consider the transition from the „Ptolemaic“ group to the „Copernican“, or in Arnold’s words, the transition from linear to  affine space. Even though a change of the formal frame cannot be continuous,  affine space is the nearest generalisation of linear space, and so we can say that this transition is gradual. In a similar way, the replacement of the Aristotelian first order dynamics by the Newtonian second order dynamics is a discontinuity but, of all discontinuities, the smallest one. If the world is not governed by a first order equation, what can then be more natural than to try a second order equation?

3.3. The epistemic rupture as a discontinuity in the formal frame of a theory

 If we compare the changes of the theory’s formal frame with the changes of its conceptual frame, we can see that the latter are neither conservative nor gradual. Thus if we take the conceptual frame, that is the categorical, explanatory and interpretative schemes, as a basis for the study of a scientific revolution, we shall arrive at a picture resembling Kuhn’s. The history of science appears as a sequence of discrete paradigm shifts. Nevertheless it is important to realise that this result is only the consequence of our choice. If we took the formal, and not the conceptual frame as the basis for our study, we would get a very much different picture of the development of science.

 The development of science is not a linear cumulative process. There really exist some qualitative changes. But if we take the formal frame of the theory as a basis for the study of these changes, the resulting picture will be more patterned. We shall be able to recognise some regular patterns in the course of the development of science. For this reason we introduce the concept of the epistemic rupture as a discontinuity of the formal frame of a scientific theory in the course of its development.

3.4 Perturbation theory as a device to measure the magnitude of the epistemic ruptures

In order to get a classification of epistemic ruptures we have first to collect examples of scientific revolutions, discussed in the literature. Our aim is not to discuss the question, whether they are or are not revolutions. We would rather look for formal similarities which occur in the epistemic ruptures, which accompany the revolutions. As we already stressed, the formal frame of the new theory contains a fragment isomorphic to the formal frame of the old one. This circumstance is very important, because it makes it possible to employ the methods of perturbation theory and to consider the new theory as a perturbation of the old one. In this way our analysis gets a solid mathematical basis. 

In order to make this point as clear as possible, we will summarise the basic steps of our approach. First we coordinate to each scientific revolution an epistemic rupture, which accompanies the revolution. Then we suggest to study the epistemic ruptures with the help of the perturbation theory. In this way we can  use the methods of perturbation theory, as a technical tool for the classification of epistemic ruptures. We do not want to enter the technical details of perturbation theory. For definitions of its basic concepts see e.g. O’Malley 1974 or Jones 1995. Our aim is rather to present the global scope, leading from revolutions through ruptures to perturbations. 

 The main reason, why we wish to connect the epistemic ruptures with perturbation theory is that in this way we hope to obtain a definite answer as to how many different kinds of  epistemic ruptures are there. We believe, that perturbations theory makes it possible to discriminate four kinds of ruptures, which are connected to four kinds of perturbations. The four basic kinds of perturbations are: 

· singular perturbation - that is a perturbation changing the leading term, and thus the degree of equations, enforcing in this way radical alterations upon the global structure of solutions.
· regular perturbations of infinite degree - that is perturbations leaving the first (or leading) terms unchanged, what means that the solutions of the perturbed system (new theory) converge to the solutions of the nonperturbed system. This convergence may however depend on infinitely many parameters, what may lead to some differences in the global properties of the solutions of the perturbed and the nonperturbed system.
· regular perturbations of finite degree - that is perturbations similar to the previous case, with the exception, that the convergence of the solutions of the perturbed system depends now only from a small number of parameters (usually only one).
· direct extensions using only finitary methods, without any limit - here the solutions of both systems are exactly the same - they are only expressed in different “coordinate systems”, using different primitive notions, etc.
3.5 Classification of epistemic ruptures

In the previous chapter we indicated, that there are four different kinds of perturbations. The aim of this chapter is to connect each kind of perturbation with the corresponding kind of epistemic ruptures. There is not enough room in this paper for detailed description of each kind of epistemic ruptures. We devoted to each kind of ruptures a specific paper.

Examples of epistemic ruptures of the greatest magnitude (which correspond to singular perturbations) are the Galilean rupture in the 17th century, during which physics  was turned into an experimental science and the Pythagorean rupture in the 5thcentury BC, during which mathematics was turned into a deductive science. This kind of rupture separates Aristotelian physics from Newtonian as well as Egyptian (or Babylonian) from Greek mathematics. We suggest calling this kind of  rupture idealisation. The basic difference between Aristotelian and Newtonian physics lies in the way how they idealise motion. Similarly the basic difference between Egyptian and Greek mathematics could be seen in the way how they idealise shape. A more detailed analysis of idealisations can be find in our paper „On Idealisation in Science and in Mathematics, An analogy between the Pythagorean and Galilean scientific revolutions“ (Kvasz 1998a).

Examples of epistemic ruptures of the next magnitude in mathematics (which correspond to regular perturbations of infinite degree) are the Cartesian rupture consisting in birth of analytic geometry, the Leibnizian rupture consisting in the birth of the differential and integral calculus, the Fregean rupture consisting in the birth of the predicate calculus or the Cantorian rupture consisting in the birth of set  theory. Each of these ruptures changed the language, with the help of which mathematics constructs its objects. These changes are so deep, that it seems, as if in the course of these ruptures quite new universes were created. New  universes of curves or formulas. For instance if we consider  how many kinds of curves were known in mathematics before  the analytic geometry, we will find out that it was only about ten. Descartes and Fermat have discovered a new way of generating curves according to algebraic formulas. In this way infinitely many new kinds of curves appeared, curves unknown to the Greeks. The Greeks could not grasp them, because they  did not have the appropriate analytic language, based on the combination of co-ordinate system, algebraic formulas and  point by point construction. So what was during this rupture qualitatively changed was the scope of objects present in  mathematics. Therefore we would like to call these ruptures re-presentations. They change the ways in which  objects and formulas are present in mathematics. A more detailed analysis of re-presentations in mathematics can be find in our paper „On the Nature of the World of Mathematics“ (Kvasz 1998b).

Examples of epistemic ruptures of the third magnitude in synthetic geometry (which correspond to regular perturbations of finite degree) are the Desargean rupture - the birth of  projective geometry, Lobachevskyean rupture - the birth of the non-Euclidean geometries, Beltramiean rupture - the birth of models in geometry, Cayleyan rupture - the birth of  abstract approach to geometry or the Kleinean rupture - the birth of group-theoretical representation in geometry. These  ruptures do not change the way in which the geometrical  objects are constructed (as opposed to the Cartesian rupture). In principle they use the Euclidean constructions with compass and ruler. So they operate in the same universe of objects. But what they change radically is the ontological status of these objects. We would like to call these ruptures objectivisations. An example of this third kind of  ruptures in physics is the Einsteinian rupture, which  is closely connected with the Desarguean one, as already stated. A more detailed analysis of objectivisation in synthetic geometry can be find in our paper „History of geometry and the development of the form of its language“ (Kvasz 1998c) as well as in (Kvasz 1996).

The last, fourth kind encompasses epistemic ruptures of the smallest magnitudes (which correspond to direct extensions). We would like to include these ruptures into our theory for the same reason, that in physics we ascribe speed  to a body which is in state of rest (equal to zero, but nevertheless, we speak about speed). We would like to get a theory, in which all ruptures, even the smallest ones, which  have almost zero effect onto the conceptual frame, would be included. We would like to call this fourth kind of ruptures as re-formulations. As an example of such re-formulation  we can take the replacement of the Roman numerals by the Arabic ones. Each calculation, fulfilled in one of them can also be executed in the other, and of course, the results will be identical. But nevertheless, if we compare the division of large numbers in these numerical systems, it is obvious, that the Arabic is more convenient.

3.6 Conceptual understanding of the classification

After the formal description of each type of epistemic rupture we can try to understand, what the ruptures in each class have in common. This is important, among others, also for extending our classification into fields such as chemistry, biology, or social sciences. Here the formal structures are not sufficiently developed for our analysis based on perturbation theory to be applied directly. We hope, that after the conceptual understanding of each type of ruptures it will be possible to identify similar ruptures also in these non-formal sciences.

The idealisation consists in changing the character of the temporal structure of the scientific language, which is fixed with the help of idealised objects of the language. The language of mathematics is based on the atemporal ideal objects (e.g. triangle or number) and it originates in the destruction of the temporal character of the evidence and in the construction of the atemporal geometrical vision, in which  the triangle is seen as an ideal form, existing independently from time. The language of physics is based on dynamic ideal objects (like the pendulum), and it originates in the passing from eternal atemporal forms to dynamic laws.

The re-presentation consists in the changes of the generality of the language, of the generality of the way, in which the discipline constructs its objects. For instance Euclidean geometry combines its objects from previously given elements (straight lines and circles, which, from the logical point of view are constants). In contrast to this the analytical geometry generates its curves point by point after a given formula (and so in a fundamental way makes use of  variables). In this way there are more curves present on the plane. The graph of the polynomial of fifth degree, which for Descartes is of course present on the plane, for Euclid did  not exist. This qualitative progress is due to the employment of the variables, and passing from constants to variables is a change of the generality of language. 

The objectivisation consists in incorporating some structures of subjectivity in the language and in corresponding changes of the synonymity of the language. For instance an important aspect of mathematics in Renaissance was, that space became an object of scientific inquiry. The question is, how could this happen. Obviously, space is not a thing that we could take into our hands and start to investigate. For the Greeks, with the  exception of the atomists and the Epicureans, space just did not exist. So the fact, that space became an object of  scientific inquiry was not by accident. It is connected  with the rise of modern subjectivity, which first appeared in perspectivist painting. The painters started to paint the world as it appeared to them. The spatial structure is a constitutive basis exactly of this perspective. So space appeared in painting, and from there it came into geometry, as a consequence of changes in the structure of subjectivity. In this new  perspectivist language it is possible in a purely analytical way to pass from one perspective to another. So the pictures, picturing the same object (building, etc.) from different perspectives, become synonyms. That is why I characterise this kind of rupture as changing the synonymity of the language - different expressions (formulas, pictures) which were originally connected only on the synthetic level  (that means extralinguistically) are now connected analytically (that means intralinguistically) - they became synonymous.

The re-formulation consists in technical changes of the language, which make it possible to describe different situations in a universal way.

4. Epistemic ruptures and scientific revolutions

As we introduced the concept of epistemic rupture as a formal change, which accompanies a scientific revolution, we can use the classification of epistemic ruptures as a basis foe a classification of scientific revolutions. As re-formulations are cumulative changes of the formal frame, we can discriminate three kinds of scientific revolutions: idealisations, re-presentations and objectivisations. In this section we would like to discuss some consequences of our classification of scientific revolutions.

4.1 The questions of continuity and discontinuity of development of mathematics

The discrimination of three kinds of revolutions makes it possible to discus the question of the continuity or discontinuity of the development of mathematics more rigorously. There are in principle three possibilities for a boundary between revolutionary and nonrevolutionary changes in mathematics. The first possibility consists in accepting only idealisations as revolutionary while declaring re-presentations and objectivisations as non-revolutionary. It is where Michael Crowe would probably put this boundary. The second, consists in acceptance of idealisations as well as re-presentations as revolutionary but excluding objectivisations. This is the concept of revolution which Joseph Dauben would probably defend. The third position would consist in accepting of all three kinds of our classification as revolutionary. This would be a position close to Jeremy Gray, who speaks about the nineteenth-century revolution in mathematical ontology. We see, that if we have only the general concept of scientific revolution, this can lead to confusions, which our classification can avoid.

If we make clear by each author in which sense does he use the concept of scientific revolutions, we can then formulate a requirement of consistency. I would like to illustrate this on the views of Michael Crowe.  He formulated the thesis, that revolutions never occur in mathematics. But then what about the Pythagorean rupture, which separates Egyptian and Babylonian from Greek mathematics? It consisted in passing from calculative recipes which formed the content of Egyptian mathematics, to deductive proofs, discovered by the  Pythagoreans. In the course of this rupture the calculative recipes were overthrown and irrevocably discarded from mathematics (the Greeks called them logistics, and did not consider them as a part of mathematics). So I think, that this rupture fulfils even the strong Crowe condition, and  it would be interesting to find the reason, why did Crowe not consider this a revolution. There are two possible answers. He might think, that the calculative recipes of the Egyptians and Babylonians do not belong to mathematics. This would mean to judge the knowledge of the Egyptians and Babylonians by the Greek standards, what is not the best thing to do. The second possibility would be to accept, that the Egyptian and Babylonian mathematics is genuine mathematics and so the rupture which separates them from the Greek mathematics lies in mathematics, but it is not a revolution. This would mean to deny the revolutionary nature even from some idealisations. What are the criteria, according to which we can treat one idealisation as a revolution, while other not.

The views of Joseph Dauben show another interesting problem in the use of the concept of scientific revolution. Dauben’s definition of the concept of scientific revolution „that some previously existing entity is relegated to a significantly lesser position“ is a precise characterisation of objectivisations, as for instance the discovery of the nonEuclidean geometry. After the discoveries of Gauss, Bolyai and Lobachevski Euclidean geometry was not overthrown. It was just turned from the fundamental theory of space into one possible geometrical model. Nevertheless the examples discussed by Dauben, are re-presentations. The discovery of the incommensurability caused much deeper changes in the Greek mathematics, than just some relegation of the Pythagorean arithmetics. The whole theory of the Pythagoreans had to be re-formulated. Its arithmetical foundations were replaced by geometrical ones. It seems that in his definition Dauben tried to define as week concept of scientific revolution as possible, so that some changes in the development of mathematics would doubtlessly fall under this concept. Afterwards, when he turned to the analysis of specific examples, he chose changes in the development of mathematics, which were more radical, so that nobody would deny their revolutionary nature. Our classification reveals clearly this conflict of these different intentions in Dauben’s paper. Thus it would be perhaps interesting to bring the definition and the examples of Dauben’s paper into agreement.

Doubtlessly we could bring up much more similar examples of inconsistent uses of the concept of scientific revolution. We will not follow this line. Our aim was just to show on some examples that the classification of scientific revolutions can contribute to clarification of the various positions in the debate about the continuity and discontinuity of the development of mathematics and science.

4.2 The fine structure of scientific revolutions

Giulio Giorello in his paper „The fine structure of mathematical revolutions: metaphysics, legitimacy, and rigour. The case of the calculus from Newton to Berkeley and Maclaurin.“ (Giorello, 1992) introduced the concept of the fine structure of scientific revolutions. It is an allusion onto quantum mechanics. The basic idea is that a revolution is not an event, which happens in a moment, but rather a slow process, which has different phases. 

The classification of epistemic ruptures opens a possibility to study such fine structure. Let us take for example the quantum mechanics. This revolution started with Planck’s theory of the radiation of the black body. In his famous paper of 1900 Planck introduced for the first time the idea of a quantum. Nevertheless, the quantum appeared in this paper only as a formal trick in the process of the derivation of the formula of the radiation of the black body. Planck was aware, that the idea of a quantum contradicts the principles of classical physics, and he believed for several years, that his derivation of the formula of the radiation of the black body will be replaced by a better one, in which no quanta would appear. This means, that the idea of the quanta appeared as a formal trick, i.e. as a re-formulation.

The next step was done by Einstein in the theory of the photo-electrical effect in 1905. There Einstein started to consider the quanta as if they would really exist. Thus the rupture separating the quantum and the classical physics becomes an objectivisation, as the quanta are considered to be some objectively existing entities. The whole „old“ quantum theory, including Bohr’s theory of the atom or Debye’s theory of capacity of solid bodies, was developed on this basis.

The revolutionary process reached the level of re-presentation in the works of de Broglie in 1923, when he formulated the idea, that all particles and not only light, have dualistic nature. Thus not only to the waves of light correspond light quanta, as Einstein thought, but also to particles as electrons or nuclei correspond some waves. In this way the quantum hypothesis, which until then served only for the description of some objects (i.e. for the objectivisation of light), becomes a fundamental principle of representation of reality. It is no more a specific property of some kinds of objects, but an universal principle, valid for everything. This stage was then fulfilled by Heisenberg and Shrödinger.

Thus we see, that the quantum re-presentation did not appear at once. It was a process, which lasted nearly 30 years. It seems, that the concepts of re-formulation, objectivisation and re-presentation describe the succession of the ruptures and thus also the dynamics of the process rather well. In a more detailed analysis of the history of quantum mechanics we would probably discover some more re-formulations as well as further objectivisations, which would make it possible to describe the „fine structure“ of this re-presentation more precisely. An important objectivisation was also the replacement of de Broglie’s original conception to understand the wave function as waves of matter by the Copenhagen interpretation of the wave function in terms of probability densities. 

From this point of view a scientific revolution is a rather complex process, consisting from several ruptures the magnitudes of which are smaller, than the magnitude of the greatest rupture, which determines the character of the revolution. These smaller ruptures form the „fine structure“ of the scientific revolution, and it is probable, that there are many regularities in their number, succession and relations.

4.3 A confrontation of ruptures and revolutions

As we already mentioned, each scientific revolution is accompanied by an epistemic rupture, which forms the formal aspect of the revolution. On the other hand, not to every rupture there is a corresponding scientific revolution. There are many ruptures, i.e. discontinuities in the formal frame of a theory, which have no parallel revolution. For instance in the development of geometry, which we analysed in the paper History of Geometry and the Development of the Form of its Language (Kvasz 1998c), there are at least ten epistemic ruptures from which only one turned into a revolution, namely the discovery of nonEuclidean geometry. The other nine, as for instance the discovery of projective geometry by Desargues, the construction of the first geometrical model by Beltrami, the relativisation of metrical structure of space by Cayley or the creation of analysis situs by Riemann, were not discussed as revolutionary. This is interesting, because from the formal point of view, these ruptures have the very same structure, as has the discovery of the nonEuclidean geometry.

In this way our distinction between the concept of rupture and revolution enables us to formulate a new epistemological question: Which epistemic ruptures turn into revolutions? Thus the question is, why from the ten very similar or even identical epistemic ruptures in geometry only one is considered to be revolutionary. The fact, that from the formal point of view all ten ruptures are nearly identical, seems to indicate, that in ascribing revolutionary character to a rupture many external factors play an important role. We believe, that the confrontation of the epistemic rupture with the process of scientific revolution might shed new light onto many classical problems of philosophy of science.

4.4 On the difference between the Copernican and Einsteinian revolutions.

We can now use our definition of the different types of revolutions based on perturbation theory to clarify the differences between the Copernican and the Einsteinian revolutions. In the case of the Einsteinian revolution we have to do with two theories, of which one is the limit case of the other. Nevertheless it is important to realise, that this limit is a regular perturbation, because if we expand the formulas of the Einsteinian theory into infinite series in (v/c)2 the first terms of these series will be independent of the parameter (v/c)2 which goes to zero. So the limit is regular in the  sense, that the basic equations preserve their degree. In  the case of the Copernican revolution the situation is quite different. The passing from Aristotelian to Newtonian physics is a singular perturbation, because it changes the first order Aristotelian dynamics into the second order Newtonian. So the rupture is more radical, than  it was in the case of the Einsteinean revolution.

Thus we see, that it was rational after the Copernican revolution to exclude completely Aristotelian physics from the curricula. It was rational, because Newtonian mechanics is a singular perturbation of Aristotelian, and  because of the singular nature of this perturbation, learning Aristotelian physics does not help much in understanding Newtonian. The situation was quite different in the case of the Einsteinian revolution. As Einsteinian physics is a regular perturbation of the Newtonian, due to the regular character of this perturbation, learning Newtonian physics helps in understanding the Einsteinian laws. There are some changes in  the differential equations, symmetries and invariants, but they don’t change the global structure of the theory. So it was fully rational, that the scientific community reacted in both cases absolutely in a different way. That means, that even if scientific revolutions may have some irrational aspects, there are also many rational motives, which can be analysed and understood.

4.5 The connections of our classification with the theory of Imre Lakatos

Our classification of scientific revolutions has a close relation to Imre Lakatos’ theory of scientific research programmes. Lakatos distinguished between the hard core of a research programme and its protective belt. Nevertheless he wavered according the scale of the research programme. On the one side he writes: “Even science as a whole can be regarded as a huge research programme”, while on the other side we can find the following formulation: “But what I have primarily in mind is not science as a whole, but rather particular research programmes, such as the one known as ‘Cartesian metaphysics’” (Lakatos 1970, p. 47). Our model makes it possible to refine this crude distinction by introducing programmes of two intermediate scales, and to clarify the nature of the core and of the belt on each of these scales.

In the absolute centre of the core of a scientific research programme the kind of ideal objects is fixed. For instance in  physics with the programmatic declaration: „Try to understand the natural phenomena as dynamic processes, obeying to natural laws“. Around this centre there is a layer formed by the re-presentation. In the case of  mechanics it is fixed by the programmatic directions: „These dynamic processes consist in mechanical motion of matter in space“. The next layer is the objectivisation. In the case of the classical mechanics it is fixed by the programmatic thesis: „Space is an absolute three-dimensional continuum, and the particles of matter interact through forces acting at a distance“. The last layer is the formulation. In the case of Lagrangean mechanics it is fixed by the programmatic instructions: „Find a system of parameters, which characterise the configuration of the system. Using these parameters express the kinetic and potential energy and their difference is the Lagrange function. Substitute this function into the Lagrangean equations and solve them“.

If some anomalies appear, the scientific research programme defends itself by developing a protective belt. At first the re-formulations are examined. In some cases it is sufficient to go for instance to the Hamiltonian formulation and the rest of the programme is saved. In the case of more serious anomalies, as for instance was the question of the nature of  aether, it is necessary to broaden the belt and incorporate into it also the objectivisation. The new theory of motion, the theory of relativity, was able to neutralise this anomaly by  changing the absolute three-dimensional space into a relative four-dimensional space-time, and giving up the concept of force acting at a distance. Nevertheless the basic re-presentation of physical processes as motion of matter in space-time was preserved. An  even deeper anomaly represented the quantum phenomena, where the re-presentation was changed - instead of motion of matter in  space we have to deal with temporal evolution of probability densities. But even such a deep change was solved inside the belt, and so the hard core itself, based on idealisation of motion could be saved. The revolutions, during which the type of idealities is changed, as it was during the Galilean and the Pythagorean revolutions, (for details see Kvasz 1998a) represent the abandonment of the old programme and  the birth of a new one. 

Present day science has basically two research programmes of the greatest scale. The first is the programme of mathematics, originating in the Pythagorean revolution, which tries to understand the phenomena on the basis of some eternal forms (numbers, triangles, functions or sets). The other is the programme of physics, originating in the Galilean revolution, which tries to  understand the phenomena on the basis of temporal processes (motion, wave propagation, probability density evolution). These two main programmes split into smaller ones, according to the particular re-presentation, and even smaller based on objectivisation. So to our classification of  scientific revolutions can be naturally extended into a classification of scientific research programmes. 

In the case  of the smaller revolutions, as objectivisations, the terminology of scientific research programmes seems to be more adequate. On the other hand to regard the whole of mathematics as a unique research programme may seem, with the possible exception of the Pythagoreans, strange. So the ruptures of scientific language are of different magnitudes. For the greatest ones Kuhn’s theory seems to be adequate, while for the  smaller ones a Lakatosian account works better. The revolutions of the intermediate magnitude require some combination of the both approaches. It turns out, that Kuhn and Lakatos, like Crowe and Dauben, do not contradict each other, but rather speak about  different things, about ruptures of different magnitude.

4.6 Some remarks on the theory of T. S. Kuhn

As all this paper is an attempt to develop the theory of scientific revolutions, comments on Kuhn’s theory are spread through the whole paper. Thus the aim of this closing chapter is to summarise some of them and to present them in a more systematic way.

Our main point of criticism of Kuhn’s theory was, that in his concepts of scientific revolution he included at least three qualitatively different kinds of revolution, which we call idealisation, re-presentation, and objectivisation. Revolutions of all three kinds can be found among the examples, which de discussed in his books. The Copernican revolution was (or led to) an idealisation, the development of the theory of electricity was a re-presentation, and the Einsteinean revolution was an objectivisation. Including all three kinds of revolution under the same concept caused, that his concepts of paradigm, anomaly, crisis, and incommensurability which were obtained from the analysis of such inhomogenious material, could be defined only by rough and general features. We believe, that this was also the reason, why in Kuhn’s theory the sociological aspect became so dominant. If he analysed the three different kinds of revolution at once, so the internal aspects, which are different for each kind of revolution, became invisible, and the external aspects, which are similar in all three cases, became to the fore. 

We believe, that our distinction of three different kinds of revolutions will make it possible to supplement Kuhn’s theory by internal aspects and so turn it to a more balanced and realistic picture of the development of science. For this reason we suggest to discriminate the paradigm of idealisation, which codifies the kind of idealisation, on which the theory is build, the paradigm of re-presentation, which codifies which kind of re-presentation of the idealised objects the theory uses, and the paradigm of objectivisation, which codifies, what from all the possibilities, which the particular re-presentation allows, became the status of an object. It is highly probable, that the incommensurability of paradigms, which Kuhn described, has different character in the three different cases. Thus the incommensurability between the Aristotelian and Newtonian physics, which lay on different paradigms of idealisation, might have quite different nature, as the incommensurability between the Newtonian and Einsteinian physics, which differ in the paradigm of objectivisation. Thus our classification opens the possibility to replace the qualitative and rather controverse question of whether two theories are or are not incommensurable, by more specific question of what kind of incommensurability is it and what does it consist of. 

The different kinds of scientific revolution lead to changes of the particular kind of paradigm. Thus idealisations lead to change of the paradigm of idealisation, etc. As we described in the connection with the fine structure of scientific revolution, an idealisation might be accompanied, beside the change of the paradigm of idealisation, also with epistemic ruptures of smaller magnitudes, which lead to changes in the paradigms of re-presentation and objectivisation. So the three different kinds of revolution have different fine structure. An idealisation might be accompanied with several re-formulations and objectivisations, a re-presentation might be accompanied by some objectivisations, while an objectivisation will have probably no specific fine structure. Thus the „fine structure“ of scientific revolutions is a phenomenon, which is specific to science, and so it is an important supplement to Kuhn’s rather sociological „structure“ of scientific revolutions.

It is also probable, that the different kinds of revolutions differ in the character of anomalies as well as in the depth of the crisis. Thus our classification opens many questions, which could lead to further development of Kuhn’s ideas.
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